Smart Grid

Course Code	19EE4602C	Year	III	Semester	Π
Course Category	Program Elective-III	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
Upon su	Upon successful completion of the course, the student will be able to					
CO1	Understand the concepts of smart grid. (L2)					
CO2	Discuss on smart metering infrastructure (L2)					
CO3	Use Load flow and contingency methods for smart grid. (L3)					
CO4	Employ stability assessment tools for smart grid. (L3)					
CO5	Know how a smart grid can be used to meet the needs of a utility(L5)					
CO6	Create a frame work for knowledgeable power engineers to operate the grid more					
	effectively. (L5)					

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)										es &		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	<u> </u>	PO10	PO12	PSO1	PSO2
CO1	3						3					3	3
CO2	3		3		3	3	3					3	3
CO3	3	3										3	3
CO4	3	3										3	3
CO5	3				3	3	3					3	3
CO6	3			3		3	3				3	3	3

SYLLABUS				
Unit No.	Contents	Mapped CO		
Ι	Introduction to Smart Grid : Smart grid Definition, benefits, Comparison of Traditional Grid and Smart Grid, Stakeholders in smart grid development, functions of smart grid components, Computation intelligence, Comparison between micro grid and smart grid.			
II	Communication and Measurement: Introduction, wide area monitoring system, phasor measurement unit, Comparison of Conventional and smart metering, Benefits of smart meters, Functional block diagram of a smart meter architecture, advanced metering infrastructure, GIS technology, MAS technology.	CO2, CO5		
III	Performance Analysis Tools For Smart Grid Design: Introduction to Load Flow Studies, Challenges to Load Flow in Smart Grid, load flow state, congestion management effect, Contingencies and their Classification, Contingency Studies for the Smart Grid, steady state contingency analysis, performance indices, sensitivity based approaches.	CO1,		

IV	Stability Analysis for Smart Grid Introduction to stability, voltage stability assessment types, voltage stability assessment technique, voltage stability indexing, analysis techniques.	CO1 , , , , , , , , , , , , , , , , , , ,
V	Computational Tools for Smart Grid Introduction, decision support tools, optimization techniques, classical optimization techniques, linear programming, non linear programming, integer programming, dynamic programming, stochastic programming, chance constant programming.	CO1 , CO6

Learning Resources

Text Books:

1. Smart Grid – Fundamentals of design and analysis by James Mamoh, Wiley – IEEE press

Reference Books:

1. Smart Grid Technology and Application by Janaka Ekanakye, Kithsiri Liyanage, Jianzhang Wu, Akiihiko Yokoyama and Nick Jeenkins , Wiley publications